Table of Contents

Preface	xiv
Acknowledgment	xxi

Section I Reproducing Traf.c

Chapter I

Adaptation and Congestion in a Multi-Agent System to Analyse Empirical Traf.c Problems:
Concepts and a Case Study of the Road User Charging Scheme at the Upper Derwent
Valley, Peak District National Park1
Takeshi Takama, University of Oxford, Stockholm Environment Institute, UK

Chapter II

A Multi-Agent Modeling Approach to Simulate Dynamic Activity-Travel Patterns	
Qi Han, Eindhoven University of Technology, The Netherlands	
Theo Arentze, Eindhoven University of Technology, The Netherlands	
Harry Timmermans, Eindhoven University of Technology, The Netherlands	
Davy Janssens, Hasselt University, Belgium	
Geert Wets, Hasselt University, Belgium	

Chapter III

MATSim-T: Architecture and Simulation Times	
Michael Balmer, IVT, ETH Zürich, Switzerland	
Marcel Rieser, VSP, TU Berlin, Germany	
Konrad Meister, IVT, ETH Zürich, Switzerland	
David Charypar, IVT, ETH Zürich, Switzerland	
Nicolas Lefebvre, IVT, ETH Zürich, Switzerland	
Kai Nagel, VSP, TU Berlin, Germany	
Chapter IV	

Chapter V

Applying Situated Agents to Microscopic Traffic Modelling	
Paulo A. F. Ferreira, University of Porto, Portugal	
Edgar F. Esteves, University of Porto, Portugal	
Rosaldo J. F. Rossetti, University of Porto, Portugal	
Eugénio C. Oliveira, University of Porto, Portugal	
Chapter VI	
Fundamentals of Pedestrian and Evacuation Dynamics	
Andreas Schadschneider, Universität zu Köln, Germany	
Hubert Klüpfel, TraffGo HT GmbH, Bismarckstr, Germany	
Tobias Kretz, PTVAG, Germany	
Christian Rogsch, University of Wuppertal, Germany	
Armin Seyfried, Forschungszentrum Jülich GmbH, Germany	
Chapter VII	
"Social Potential" Models for Modeling Traffic and Transportation	
Rex Oleson, University of Central Florida, USA	
D. J. Kaup, University of Central Florida, USA	
Thomas L. Clarke, University of Central Florida, USA	
Linda C. Malone, University of Central Florida, USA	
Ladislau Boloni, University of Central Florida, USA	
Chapter VIII	
Towards Simulating Cognitive Agents in Public Transport Systems	
Sabine Timpf, University of Augsburg, Germany	
Section II Intelligent Traffic Management and Control	
Chapter IX	
An Unmanaged Intersection Protocol and Improved Intersection Safety for Autonomous Vehicles	
Kurt Dresner, University of Texas at Austin, USA	
Peter Stone, University of Texas at Austin, USA	
Mark Van Middlesworth, Harvard University, USA	
Chapter X	
Valuation-Aware Traffic Control: The Notion and the Issues	
Heiko Schepperle, Universität Karlsruhe (TH), Germany	
Klemens Böhm, Universität Karlsruhe (TH), Germany	

Chapter XI

Learning Agents for Collaborative Driving	
Charles Desjardins, Laval University, Canada	
Julien Laumônier, Laval University, Canada	
Brahim Chaib-draa, Laval University, Canada	
Chapter XII	
Traffic Congestion Management as a Learning Agent Coordination Problem	
Kagan Tumer, Oregon State University, USA	
Zachary T. Welch, Oregon State University, USA	
Adrian Agogino, NASA Ames Research Center, USA	
Chapter XIII	
Exploring the Potential of Multiagent Learning for Autonomous Intersection Control Matteo Vasirani, University Rey Juan Carlos, Spain Sascha Ossowski, University Rey Juan Carlos, Spain	280
Chapter XIV	
New Approach to Smooth Traffic Flow with Route Information Sharing	
Tomohisa Yamashita, National Institute of Advanced Industrial Science and Technology (AIST), Japan	
Koichi Kurumatani, National Institute of Advanced Industrial Science and Technology (AIST), Japan	
Chapter XV	
Multiagent Learning on Traffic Lights Control: Effects of Using Shared Information	
Denise de Oliveira, Universidade Federal do Rio Grande do Sul, Brazil	
Ana L. C. Bazzan, Universidade Federal do Rio Grande do Sul, Brazil	

Section III Logistics and Air Traffic Management

Chapter XVI

The Merit of Agents in Freight Transport	323
Tamás Máhr, Almende/TU Delft, The Netherlands	
F. Jordan Srour, Rotterdam School of Management, Erasmus University, The Netherlands	
Mathijs de Weerdt, TU Delft, The Netherlands	
Rob Zuidwijk, Rotterdam School of Management, Erasmus University, The Netherlands	

Chapter XVII

Chapter XVIII

A Multi-Agent Simulation of Collaborative Air Traffic Flow Management	.357
Shawn R. Wolfe, NASA Ames Research Center, USA	
Peter A. Jarvis, NASA Ames Research Center, USA	
Francis Y. Enomoto, NASA Ames Research Center, USA	
Maarten Sierhuis, USRA-RIACS/Delft University of Technology, The Netherlands and	
NASA Ames Research Center, USA	
Bart-Jan van Putten, USRA-RIACS/Delft University of Technology, The Netherlands and	
NASA Ames Research Center, USA	
Kapil S. Sheth, NASA Ames Research Center, USA	

Compilation of References	
About the Contributors	
Index	

Detailed Table of Contents

Preface	xiv
A . I	
Acknowledgment	XX1

Section I Reproducing Traffic

Chapter I

Adaptation and Congestion in a Multi-Agent System to Analyse Empirical Traffic Problems:	
Concepts and a Case Study of the Road User Charging Scheme at the Upper Derwent	
Valley, Peak District National Park 1	l
Takeshi Takama, University of Oxford, Stockholm Environment Institute, UK	

This chapter discusses congestion and adaptation by means of a multi-agent system (MAS) aiming to analyze real transport and traffic problems. The chapter contribution is both a methodological discussion and an empirical case study. The latter is based on real stated-preference data to analyze the effect of a real road-user charge policy and a complimentary park and ride scheme at the Upper Derwent Valley in the Peak District National Park, England.

Chapter II

A Multi-Agent Modeling Approach to Simulate Dynamic Activity-Travel Patterns	
Qi Han, Eindhoven University of Technology, The Netherlands	
Theo Arentze, Eindhoven University of Technology, The Netherlands	
Harry Timmermans, Eindhoven University of Technology, The Netherlands	
Davy Janssens, Hasselt University, Belgium	
Geert Wets, Hasselt University, Belgium	

The authors discuss an agent-based modeling approach focusing on the dynamic formation of (location) choice sets. Individual travelers learn through their experiences with the transport systems, changes in the environments and from their social network, based on reinforcement learning, Bayesian learning, and social comparison theories.

Chapter III

MATSim-T: Architecture and Simulation Times	57
Michael Balmer, IVT, ETH Zürich, Switzerland	
Marcel Rieser, VSP, TU Berlin, Germany	
Konrad Meister, IVT, ETH Zürich, Switzerland	
David Charypar, IVT, ETH Zürich, Switzerland	
Nicolas Lefebvre, IVT, ETH Zürich, Switzerland	
Kai Nagel, VSP, TU Berlin, Germany	

This chapter tackles micro-simulation by discussing design and implementation issues of MATSim, as well as an experiment in which this simulator is used to study daily traffic in Switzerland.

Chapter IV

TRASS: A Multi-Purpose Agent-Based Simulation Framework for Complex Traffic	
Simulation Applications	79
Ulf Lotzmann, University of Koblenz, Germany	

Continuing the discussion around microscopic simulation, in this chapter, the TRASS simulation framework, a multi-layer architecture, is presented and evaluated in the context of several application scenarios.

Chapter V

Applying Situated Agents to Microscopic Traffic Modelling	
Paulo A. F. Ferreira, University of Porto, Portugal	
Edgar F. Esteves, University of Porto, Portugal	
Rosaldo J. F. Rossetti, University of Porto, Portugal	
Eugénio C. Oliveira, University of Porto, Portugal	

In this chapter, a multi-agent model is proposed aiming to cope with the complexity associated with microscopic traffic simulation modelling. Using a prototype with some of the features introduced, the authors discuss scenarios using car-following and lane-changing behaviours.

Chapter VI

Fundamentals of Pedestrian and Evacuation Dynamics	124
Andreas Schadschneider, Universität zu Köln, Germany	
Hubert Klüpfel, TraffGo HT GmbH, Bismarckstr, Germany	
Tobias Kretz, PTVAG, Germany	
Christian Rogsch, University of Wuppertal, Germany	
Armin Seyfried, Forschungszentrum Jülich GmbH, Germany	

The authors of this chapter investigate the behaviour of pedestrians and human crowds, focussing on aspects related to physical movement. It thus starts with a review of methods and approaches, and continue with a discussion around validation issues, aiming at reducing the gap between the multi-agent and pedestrian dynamics communities.

Chapter VII

"Social Potential" Models for Modeling Traffic and Transportation	
Rex Oleson, University of Central Florida, USA	
D. J. Kaup, University of Central Florida, USA	
Thomas L. Clarke, University of Central Florida, USA	
Linda C. Malone, University of Central Florida, USA	
Ladislau Boloni, University of Central Florida, USA	

This chapter discusses the "Social Potential" model for implementing multi-agent movement in simulations by representing behaviors, goals, and motivations as artificial social forces.

Chapter VIII

In this chapter, Sabine Timpf presents a vision for simulating human navigation within the context of public, multi-modal transport, showing that cognitive agents require the provision of a rich spatial environment. She introduces spatial representations and wayfinding as key components in the model. She illustrates her vision by a case study that deals with multi-modal public transport.

Section II Intelligent Traffic Management and Control

Chapter IX

An Unmanaged Intersection Protocol and Improved Intersection Safety for	
Autonomous Vehicles	93
Kurt Dresner, University of Texas at Austin, USA	
Peter Stone, University of Texas at Austin, USA	
Mark Van Middlesworth, Harvard University, USA	

This chapter presents two extensions of a system for managing autonomous vehicles at intersections. In the first, it is demonstrated that for intersections with moderate to low amounts of traffic, a completely decentralized, peer-to-peer intersection management system can reap many of the benefits of a centralized system without the need for special infrastructure at the intersection. In the second extension, it is shown that the proposed intersection control mechanism can mitigate the effects of catastrophic physical malfunctions in autonomous vehicles.

Chapter X

Valuation-Aware Traffic Control: The Notion and the Issues	218
Heiko Schepperle, Universität Karlsruhe (TH), Germany	
Klemens Böhm, Universität Karlsruhe (TH), Germany	

Providing services and infrastructure for autonomous vehicles at intersections is also the topic of this chapter in which the authors describe an agent-based valuation-aware traffic control system for intersections. Their approach combines valuation-aware intersection-control mechanisms with driver-assistance features such as adaptive cruise and crossing control.

Chapter XI

Learning Agents for Collaborative Driving	240
Charles Desjardins, Laval University, Canada	
Julien Laumônier, Laval University, Canada	
Brahim Chaib-draa, Laval University, Canada	

Collaborative driving is the focus of this chapter. The authors describe an agent-based cooperative architecture that aims at controlling and coordinating vehicles, also showing that reinforcement learning can be used for this purpose.

Chapter XII

The authors of this chapter tackle the issue of how road users can learn to coordinate their actions with those of other agents in a scenario without communication. Further, the authors explore the impacts of agent reward functions on two traffic related problems (selection of departure time and selection of lane).

Chapter XIII

In this chapter, the authors discuss multiagent learning in the context of a coordination mechanism where teams of agents coordinate their velocities when approaching the intersection in a decentralized way, improving the intersection efficiency.

Chapter XIV

New Approach to Smooth Traffic Flow with Route information sharing	
Tomohisa Yamashita, National Institute of Advanced Industrial Science and	
Technology (AIST), Japan	
Koichi Kurumatani, National Institute of Advanced Industrial Science and	
Technology (AIST), Japan	

The authors of this chapter propose a cooperative car navigation system with route information sharing, based on multi-agent simulation. They use a scenario from Tokyo in which drivers can share information about their route choices. Results have confirmed that the mechanism has reduced the average travel time of drivers sharing information and that the network structure influenced the effectiveness of the mechanism.

Chapter XV

Exchange of information is also tackled in this chapter, this time by traffic signal agents. Authors show that these agents can learn better than independent ones, by sharing information about their environment.

Section III Logistics and Air Traffic Management

Chapter XVI

The Merit of Agents in Freight Transport	. 323
Tamás Máhr, Almende/TU Delft, The Netherlands	
F. Jordan Srour, Rotterdam School of Management, Erasmus University, The Netherlands	5
Mathijs de Weerdt, TU Delft, The Netherlands	
Rob Zuidwijk, Rotterdam School of Management, Erasmus University, The Netherlands	

In this chapter, the authors apply agent-based solutions to handle job arrival uncertainty in a real-world scenario. This approach is compared to an on-line optimization approach across four scenarios, with the results indicating that the agent-based approach is competitive.

Chapter XVII

This chapter deals with the use of agent-based simulation for modelling the organisational structure and mechanisms in the context of regional transport corridors. A special focus is put on the accurate conceptualization of costs.

Chapter XVIII

A Multi-Agent Simulation of Collaborative Air Traffic Flow Management	. 357
Shawn R. Wolfe, NASA Ames Research Center, USA	
Peter A. Jarvis, NASA Ames Research Center, USA	
Francis Y. Enomoto, NASA Ames Research Center, USA	
Maarten Sierhuis, USRA-RIACS/Delft University of Technology, The Netherlands and	
NASA Ames Research Center, USA	
Bart-Jan van Putten, USRA-RIACS/Delft University of Technology, The Netherlands and	
NASA Ames Research Center, USA	
Kapil S. Sheth, NASA Ames Research Center, USA	

Collaborative air traffic flow management is the topic of this chapter. This chapter describes the design and methodology of a multi-agent simulation for this problem. This is then used to evaluate several policies for the management of air traffic flow.

Compilation of References	
About the Contributors	
Index	